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Abstract. The coupling of atomic tunneling states with vibration modes in amorphous 
materials is considered on the basis of dangling-bond and void-like structure model proposed 
by the authors. The theoretical investigation shows the atomic tunneling state has a strong 
influence on its nearby vibration modes. As a result, this mode will either be softened or 
become unstable causing a new tunneling mode, A hierarchy of constrained double-well 
potentials is then obtained. The recurrence formulae of the hierarchy are derived; the 
termination emerging naturally. The possible relation between the hierarchical constrained 
dynamics and the ‘anomalous’ relaxation in condensed matter is discussed. 

1. Introduction 

The anomalous thermal and acoustic properties of amorphous materials at low tem- 
peratures still remain obscure to theoretical researchers. Recent explanations of these 
properties are based on a phenomenological model of two-level systems (TLS) put 
forward by Phillips (1972) and Anderson et a1 (1972); it is assumed that in amorphous 
solids some localised low-energy elementary excitations exist, which result from the 
atomic tunneling states. However, the relationship between the double-well potential 
(DWP) in which the tunneling process occurs and local structural mechanisms is unclear. 
Several microscopic models have been proposed so far, e.g. the free-volume model of 
Cohen and Grest (1980), the layer-like model of Phillips (1981), the critical-potential 
model of Klinger et a1 (1982), the non-ideal Frenkel-Kontorova model of Geszti (1986) 
and the chaotic-configuration model of Schilling (1984), but they can only explain part 
of the anomalous low-temperature properties. In fact, numerous experimental findings 
(Phillips 1985) indicate that a strong correlation exists between the anomalous low- 
temperature properties. 

The present authors have proposed a dangling-bond and void-like structure (DVS) 
model (Wu and Chen 1986) which attributes the microscopic mechanism of the appear- 
ance of the DWP to two structural characteristics of amorphous materials: dangling-bonds 
and void-like structural defects. By applying the path integral theory (Chen et a1 1986), 
the analytic form of the effective potential which the atom in the void experiences is 
obtained, and simultaneously the critical condition when the DWP arises is given and the 

0953-8984/89/489671 + 14 $02.50 @ 1989 IOP Publishing Ltd 9671 



9672 Xiao Liu et a1 

behaviours of the DWPS and TLSS in the vicinity of the critical point are also investigated. 
However, in our previous discussions, the atom in the void can only move in an adiabatic 
effective potential and the coupling of the atomic tunneling states with its environment 
has not been considered directly. In order to fit the model to the real circumstances in 
amorphous materials, in this paper the coupling effect is led directly into the Ham- 
iltonian. Therefore, two problems ought to be considered: one is the influence of local 
vibration modes on the atomic tunneling process in the void, the other is the influence 
of the atomic tunneling states on the behaviours of surrounding atoms. The former has 
been discussed indirectly by the authors (Chen and Wu 1986), the latter will be discussed 
in this paper. 

We start from a void in a one-dimensional chaotic chain of atoms. Using the analytic 
form of the effective potential solved by the DVS model and moreover adopting a special 
data fitting method, we find the following results. 

(i) There exists a set of low-frequency vibration modes associated with a DWP, and 
this set of modes causes the fluctuations of the shape of the DWP. This result is in 
agreement with the findings of Buchenau eta1 (1984,1986) from their neutron scattering 
measurements. 

(ii) The existence of the DWP in which the atom in the void moves induces a hier- 
archical, constrained sequence of DWPS. This result not only provides plentiful low- 
energy elementary excitations for explaining the anomalous low-temperature properties 
of amorphous materials but also introduces a microscopic model and constraining 
mechanisms to the principles outlined by Palmer et a1 (1984) for interpreting the ‘anom- 
alous’ relaxation in glasses. 

(iii) The effective range of the coupling, i.e. the termination of the hierarchical 
constrained DWPS, emerges naturally from the DVS model. This result accords with the 
demands suggested by Fleurov (1988) for the hierarchical scale of DWPS. In addition, the 
termination also meets the requirements of the fracton model proposed by Alexander 
et a1 (1983). 

Recently, two types of Dwps-soft and rigid-were investigated under a unified 
approach by Fleurov et a1 (1985) and Fleurov and Trakhtenberg (1986). Soft DWPS are 
mainly responsible for the anomalous low-temperature properties, whereas rigid ones 
determine the ultrasonic attenuation and other kinetic properties of amorphous 
materials at higher temperatures. In this paper, both types arise naturally and their 
characteristics can be discussed analytically. The numerical result agrees well with the 
one obtained by Fleurov et a1 (1985) using the quantum chemical computation method; 
moreover, our result can describe the behaviours in the vicinity of the critical point 
consistently. 

The above introduction shows that DVS model can provide a unified foundation for 
the theoretical explanation of the anomalous thermal, ultrasonic, optical and electronic 
(Wu and Chen 1986) properties in amorphous materials, and may make a connection 
between the models proposed to explain the anomalous low-temperature thermal 
properties and the anomalous Debye relaxation. In Q 2, we start from the Hamiltonian 
considering the influence of neighbouring atoms to get the effective potential which can 
be easily treated theoretically. In Q 3 the appearance of a low-frequency vibration mode 
and a DWP of higher rank is analysed on the basis of the DVS model. The recurrence 
formulae and the termination are derived in Q 4. A discussion and concluding remarks 
are given in 9 5 .  
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Electron 
shell \ 

A-3 A-2 A-, @ Figure 1. Schematic of a one-dimensional DVS 
model. Atom A. is located in a void and is 
displaced from its centre. SI is the radius of the 
void, 2S2 is the distance of randomly located 
second-nearest-neighbour atoms and 2S3 is 
that of third-nearest-neighbour atoms. kp 2s3p4 

2. Solution of the effective potential 

A one-dimensional DVS model is shown in figure 1. Inside a void, atom A. interacts with 
two dangling-bonds, left and right. SI is the radius of the void (half of the distance from 
A-, to A+,).  2S2 is the distance of randomly located neighbouring atoms beyond the 
void (A-* to Ac2). 2S3 is the distance beyond the above ones (A-3 to A+3), and so on. 

HDvs = E ~ N ~ ,  + 
The Hamiltonian of the DVS model we use is 

Nod + [2mQ2 + a Q  + mQ2Q2 + mQ2(S1 - 
i. u d 

The first term of the Hamiltonian expresses the electronic energy of dangling-bonds, 
i = L ,  R corresponding to two dangling-bonds, o = t , 1 to spins and N, ,  = aLa, ,  , 
where a ; ,  a,, are the electronic creation and annihilation operators of the dangling- 
bonds respectively. The second term expresses the electronic energy of the electron shell 
of atom Ao; we assume that the electronic states of the shell can be divided into two 
parts, symmetric (d = s) and antisymmetric (d = p ) ,  and Nod = a& sod, where a&, aOd 
are the electronic creation and annihilation operators of the shell. The third term is the 
vibration energy of the ion which has considered the influence of its neighbouring atoms, 
A-, and A,, .  The fourth and fifth terms are the coupling terms of the electron shell of 
atom A. to the electrons of the dangling-bonds and to its ion. 

By using the treatment of the Hamann (1970) path integral theory and integrating 
all electronic degrees of freedom in (l), we can obtain the adiabatic effective potential 
of atom Ao. Except for the interaction term of atom A. with its neighbouring atoms, (1) 
is completely similar to the corresponding Hamiltonian we used previously (Chen et a1 
1987); nevertheless, the tiny difference has no influence on integrating over all electronic 
degrees of freedom. In the same treatment as before, the total partition function of DVS 
model can be written as 

where Ze, is the partition function of electrons, Zvlb is the vibrational partition function 
of atom Ao. So 

zDVS = ZelZvib ( 2 )  

where 
potential, respectively. Therefore we get 
Veff(Q, S I )  = a Q  + mQ2Q2 + mQ2(S1 - So)2 

= l/kBT, and Teff and V,, are the effective kinetic energy and the effective 

+ (2MQ/n) tan-' ( - M Q / Z )  + ( Z / n )  ln(1 + M 2 Q 2 / E 2 )  (4) 
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Figure 2. How the shape of the effective potential 
V,,,(Q)ofg-Si0,changeswithrespect toS,, show- 
ing the transition from a single-well potential to a 
double-well potential. 

Figure 3. Effective void potential for g-Si02 ver- 
sus void radius S,  (after Liu et a1 (1988)). Dotted 
line, V,,,(S,, Q,,,); broken line, interaction 
energy of the atom in the void with its neigh- 
bouring atoms; fullcurve, thesumof the twolines, 
being the effective potential which the vibrational 
mode of the void meets, U Z ( S z ) .  

where 2 is the resonant width of the electron shell. The equilibrium position of atom A. 
is determined by 

dveff(S1, Q)/~QIQ=Q,, ,  = a + 2mQ'Qmn - (2M/n)tan-l  (-MQmin/z) = O .  ( 5 )  

For small asymmetry ( a  = 0), we have 

mQ2Qmin = ( M / J G )  tan-' (-MQmi,/X). (6) 

y = M2/nmQ2x (7) 

The above equation tells us that the parameter 

determines the shape of V,,. Fory S yo = 1, it is a single-well potential while, fory > y o ,  
it is a DWP, The resonant width C is a function of the radius of the void S1, and in general 
can be expressed as (Chen et a1 1987) 

c = 2,(S,/Sl)2k 

where S, is the critical radius, satisfyingy(SI = S,) = y o  = 1. In other words, for S1 G S, , 
V,,, is a single-well potential, while for S1 > S,, it is a DWP. In figure 2, the change of the 
effective potential from a single-well form to a double-well one with increasing S1 is 
demonstrated. The calculation is for g-Si02. The parameters according to our previous 
paper (Liu eta1 1988) are: m = 2.66 X kg, R = 3 x lo'* Hz (which is the dominant 
frequency from Buchanau et a1 (1984)): 2, = 0.5 eV which is the order of magnitude of 
the electrons band width in glasses, So = 1.7 A from Fleurov et a1 (1985), and k = 6 for 
the Lennard-Jones potential considered. 

From Veff(Q,Sl),  the potential of the cluster (A-', Ao,  A,') i.e. the effective 
potential of the void, as a function of its radius SI can also be obtained. We assume that 
atom A, is always in its equilibrium position located so as to minimise the total potential. 
This is demonstrated in figure 3 by the dotted curve. The numerical result is for g-Si02 
and agrees with the ones obtained by Fleurov et a1 (1985). The curve Veff(Sl, Q,,,) 
corresponds to a harmonic potential for small deviation of SI from its crystalline value 
So,  then becomes anharmonised and passes over a maximum in the critical region. 
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Figure 4. The function f(S,/S,): 
curve A, k = 8; curve B,  k = 6; 
curve C, k = 4. We find that it can 
be divided into three parts. The 
data is for g-Si02. 

This property is very important for the following discussions of the appearance of the 
hierarchical, constrained DWPS. So it is necessary to find an easily tractable form of 
Veff(S12 Qmm>. 

Combining (7) and (8) we get 

M 2  = nm2Q2xc. (9) 
Substituting (8) into (6), we see that for a certain s l ,  the equilibrium position of atom 

A. can be determined. But (6) is a transcendental equation which cannot be solved 
analytically, and what is more, expansion cannot give a reliable result for large deviations 
from the point about which the expansion is made. For this reason, a special data fitting 
method is applied. First of all, two dimensionless parameters are introduced 

Q’ = q\/nmQ2/Zc Q,,, c = (Sc/Sl)2k. (10) 

Qi  = tan-’(Q’/C). (11) 

Veff(S1, Q m m )  = -Zcf(c> + mQ2(S1 - SO)’ (12) 

Thus (6) can be rewritten as 

Using (9) and (ll), Veff (SI , Q,,,) can be expressed as 

where 
f(c) = Qi/n - ( c / n )  ln(1 + Q12/C2). 

We find that (13) is only a pure mathematical transcendental function and the 
functional relation between C and f has nothing to do with any particular material 
parameters, where Qi  is determined by (11) for a certain value of C. Furthermore, as 
C = apart from the parameter k ,  the functional relation between S1/Sc and 
f is also independent of material parameters. In figure 4, a series of the curves 
fk(S1/Sc) are demonstrated for different values of k ( k  = 4,6,8) .  By analysing these 
curves, we find that though for different materials k takes different values, the shape of 
the curves on the whole remaining the same. Thus the curves can be divided into three 
parts: a straight line lying on the axis of abscissa from So/Sc to 1 , then a quadratic parabola 
with its vertex on ( 1 , O )  followed by a straight line in contact with it, which can be 
expressed as 

f(Sl/Sc) = 0 S& SI/& < 1 
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Figure 5.  Plots of ( a )  Vcff(Sl, Q,J .  ( b )  
avds,, Q m , J / a s i >  and ( C )  a*Vedsi .  Qd/as2 
versus SI for g-Si02.  Full curves. accurate values; 
dotted curves, simplified forms. 

where a, b ,  d ,  A are dimensionless parameters depending on the values of k ,  e.g. for 
Lennard-Jones potential k = 6, we get a = 13.6, b = 13.2, d = 45.8, A = 1.04. 

By introducing 

From the above consideration, the effective potential of the void as a function of its 
radius has been simplified to a semi-analytic form which can be easily treated in the 
following discussions. In figure 5 ,  the full curves represent the accurate values of 
Veff(S,, Qmin), its derivative and its second derivative for g-Si02, while the dotted 
curves are their simplified forms. We see that this kind of simplification is acceptable. 

3. The appearance of low-frequency vibration modes and the instability of critical DWP 

According to the result of the above considerations, the shape of the effective potential 
of atom A. depends on the value of S1. As the neighbouring atoms A-, and A,, vibrate 
in the vicinity of their equilibrium positions, the shape of Veff will change considerably. 
This indicates that the tunneling process and the vibration of neighbouring atoms are 
closely related and have interaction with one another. In our previous paper (Chen and 
Wu 1986), the temperature related TLS was introduced by considering the influence of 
lattice vibrations on the atomic tunneling process. In this section the influence of the 
atomic tunneling states on local vibration modes will be discussed. 

In order to deal with this problem, a more extended cluster of atoms is considered, 
containing the neighbouring atoms beyond the void (A-* and A+2). In this cluster the 
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atoms of the dangling-bonds (A-l and A+1) are not fixed but free to oscillate. As was 
shown in figure 1, we have three variables to describe the cluster, S 2 ,  S1 and Q ,  one of 
which (keeping S, fixed) simulates a static disorder. The effective potential of the whole 
cluster can be expressed as 

u2(S2,5’1, Q )  = Vef f (S1 ,  Q )  + V(l-2 - 1 - 1 )  + V(1+2 - [ + I )  (17) 

where li represents the deviation of atom Ai from its equilibrium position, while 
V ( l L 2  - lL1) and V(1+2 - Z+l) represent the interaction energy between two atoms. In 
the harmonic approximation 

(18) 

(19) 

V ( r )  = 1&r 2 

Il+, - 1 + 1 /  = I L L 2  - z-,1 = IS2 - S, - So/ .  

where E corresponds to the elastic coefficient. In the symmetric approximation 

As explained in § 2 ,  considering the influence of the outside atoms, the atom in the 
void is always in its equilibrium position, so 

u2(S2,S1) = u 2 ( S 2 ,  

d U 2 ( S 2 ,  S I ) / ~ S I  = a v e f f ( S 1 ,  Q m i n ) / d s ,  - 2 ~ ( S 2  - SI - So) = 0. 

Q m i n )  = Vef f (S1 ,  Qmin)  + &(S2 - S1 - So)’. (20) 

(21) 

(22) 

(23) 

For a fixed S 2 ,  the equilbrium position of S1 is determined by 

Solving equation (21) and at the same time considering that 

d 2 u 2 ( S 2 ,  S,)/dS? = d2Veff (S1,  Q m i n > / d S ?  + 2~ 

S 2  C S2cl = (1 + mQ2/&)[(2d + b)/2d] S, + ( 1  - mQ2/&)S0 - bZc/2&S,  

we obtain the results below. If the condition 

holds, the equation (21) has one solution corresponding to a minimum of the potential 
(20) ,  namely 

S l S  = [(mQ‘ - &)So + & S 2 ] / ( &  + mQ2). 

S 2  z S2c2  = (1 + mQ2/&)S, + ( 1  - mQ2/&)So 

(24) 

(25) 

If the condition 

holds, equation (21)  has one solution corresponding to a minimum of the potential (20), 
too 

S1, = [ (mQ2 - &)SO + &S2 + bCc /2S , ] / (& + mQ2).  (26) 
The most significant thing is that if the condition 

S2q S2 S 2 c 2  

holds, equation (21) has three solutions 

Slml = [(mQ2 - &)So + & S 2 ] / ( &  + m Q 2 )  

S,,, = [(mW - &)So + &S2 - C,d/S,]/(& + mQ2 - C,d/S:) (28) 

Slmj = [(mQ2 - &)So + &S2 + bC, /2SC] / (& + mQ2) 
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where Slml,  SI,, correspond to two minima of the potential (20), while SI,, corresponds 
to the maximum. 

The above result can be explained as follows. Considering the influence of the 
vibrations of atoms A-2 and A+*, S1 (the only degree of freedom of the void) can no 
longer be fixed, but oscillates in a potential determined by the coupling effect. The 
frequency squared of this vibration mode is 

When S 2  is small enough, i.e. S2 d S2,,, the vibration of SI sits in a single-well potential 
and 

Qz,,(S2 s S 2 , , )  = (l/m)(mQ’ + E ) .  (30) 

In this case the vibration of Q can prove to be in a single-well potential as well. So it is 
just like the situation in crystalline form of the material. With increasing S2 ,  the local 
tension increases greatly, and hence the total potential of the cluster although atom A. 
is in its equilibrium position located to minimise the total potential. At the same time, 
the vibration mode of SI becomes softer and softer, i.e. Qil(S2) decreases constantly. 
However, since the interaction energy per atom in non-crystalline solids is close to that 
in their crystalline counterparts, neither the local tension nor the total potential can 
increase any further until S 2  exceeds a certain value, at which point a local ‘phase 
transition’ occurs. This indicates that the system changes locally from elastic to plastic 
with partial relaxation of the local tension and decrease of the total potential. The same 
result can be recognised more clearly by 

Q;l(S*c, < s* < S2,J = (l/m)(mQ2 + E - dX,/S:) d 0. (31) 

(The equality holds at the critical point.) The negative frequency squared implies 
breakdown of the single-well potential, and hence an establishment of a DWP; as a result, 
the vibration of SI meets a DWP instead of a single-well potential. A new equilibrium is 
then set up when SI sinks into one of the two newly created wells. The first and third 
formulae in (28) correspond to the positions of both wells, while the second corresponds 
to the barrier between them. The newly created DWP is then induced by the atomic 
tunneling states occurring in the primary DWP of atom A” and it can be regarded as a 
DWP of higher hierarchical rank. If S 2  enlarges further, i.e. S 2  2 SzCz, S1 will come back 
to a single-well potential once more. In this case, the interaction between the dangling- 
bonds and their outside neighbouring atoms is far beyond the elastic region, so the 
harmonic approximation becomes invalid; nevertheless, such a large value of S 2  is rarely 
seen even in amorphous materials. So this case is not worth discussing further. In figure 
6, the potential where S1 vibrates is demonstrated for different values of S 2 ,  showing a 
change from a single-well potential to a DWP and in reverse order. 

As discussed above, with the increase of S 2 ,  the frequency squared of the vibration 
of SI decreases considerably, and even passes zero to negative. The equilibrium becomes 
unstable and the system tends to find a new stable state causing the splitting of a single- 
well potential into a DWP. In this case SI can either shrink or elongate. When it shrinks 
to a subcritical region with S ,  s S,, the primary DWP disappears. When it elongates to 
supercritical region, the primary DWP is no longer unstable and critical, but becomes 
rigid with higher barrier and smaller deformation. Therefore two different types of DWPS 
come out in the same model. The calculation of some characteristic parameters for 
g-Si02 will be given in a separate paper. Here we only conclude that when S1 is in the 
vicinity of its critical point, the primary DWP is critical and soft; when SI > AS,, it is rigid. 
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s2=3zi. Szr,<S2<Szr, Sz=Szr2 

Figure 6. The changes induced in the shape of the 
DWP U2(S , .  S,)-versus-S, plot by varying S2. Two 
critical points are shown; however, S,,, is by no 
meansdue to the breakdownof harmonic approxi- 
mation for extremely large deformation. The data 
are for g-Si02. 
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Thus considering the interaction of the void with its neighbouring atoms. the 
vibration of atoms A+1 and A-,  can be treated as a vibration of a quasi-particle with the 
radius of the void being its degree of freedom. The quasi-particle sees an effective 
potential whose shape depends on the static formation parameters of surrounding atoms. 
At the same time, the primary DWP of the atom in the void is strongly influenced by the 
behaviour of the quasi-particle. So a strong constraint is clearly seen between the first 
two ranks of DWPS. 

4. Hierarchy of DWPS and its termination 

The above analyses inspire us to speculate as to whether there is any new DWP of higher 
rank and low-frequency vibration modes if we consider the system to be further and 
further extended. If this is true, can we continue the same consideration from rank to 
rank constructing an unlimited hierarchical ladder? These are the problems we treat in 
this section on the basis of the DVS model. 

In one-dimensional DVS model, a more and more extended cluster of atoms is nothing 
but a cluster containing more and more neighbouring atoms from the outside. In the 
symmetric approximation, the characteristic degree of freedom specifying the shape and 
size of the cluster is its radius which can express the motion of the entire cluster, as was 
shown in figure 1. 

The coupling of the vibrations of atoms A-, and A,, with the dynamical behaviours 
of the cluster consisting of atoms A-,,  A. and A,, has been considered above. In the 
following, atoms A-* and A,, are involved in the extended cluster to consider its 
coupling with neighbouring atoms A-, and A+3. The vibrational degree of freedom of the 
extended cluster is its radius S 2 ,  while S3 remains fixed. As explained above, in this 
cluster, SI always minimises the total potential, i.e. the quasi-particle is in its equilibrium 
position. However, from figure 6, we see that the DWP in which S1 moves is asymmetric, 
the relative depth of the two wells depending on the value of S 2 .  For convenience we 
assume that S ,  always sinks in a well having smaller value of S , ,  i.e. 

S1, = [ (ma2  - &)SO + E S * ] / ( E  + mS2’). (32)  

In the same harmonic approximation of two neighbouring atoms, the total effective 
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potential of the extended cluster is 

Substituting (32) into (33), we have 

where 

A 2  = & / ( E  + mQ2)  B2 = ( E  - m a 2 ) / ( &  + m Q 2 )  

a2 = so + S ,  + (mQ2/&)(Sc - S o )  (35) 

p2 = so + ASc + (mQ*/&)(ASc - So) .  

We find that (34) has a form similar to that of Ve,,(Sl, Qmin). It is just because of the 
particular form of V,,(S,, e,,,,,) that the vibrational mode of S ,  is softened, and under 
certain conditions its potential splits into a DWP of the second rank. So we continue the 
same consideration in the following. When S3  is small enough, it locates in a single-well 
potential with a frequency determined by 

= ( l /m)(mQ2A2 + E ) .  (36) 

With the increase of S3, the frequency squared of S 2  turns out to be 

Q$,(S,) = ( l /m)(mQ2A2 + E - dXcA$/Sz). (37) 

If the condition 

E < dX,A$/Sa - mR2A2 (38) 

holds, (37) becomes negative, then the single-well potential splits into a DWP. 
Therefore, by considering an extended system we can get not only a new low- 

frequency vibration mode, but a Dwpof third rank as well. The key condition to guarantee 
the occurrence of a DWP of higher rank is that the frequency squared becomes negative, 
and this condition in turn depends on the radius of the extented cluster. For a particular 
void in amorphous materials, such a hierarchyof DWPS cannot always happen. However, 
in our view, the structural defects such as voids exist everywhere with a distribution of 
S1, S 2 ,  . . . , as g ( S , ) ,  g(S2), . . . . So for some of the voids, such hierarchies can really 
happen. 

By continuing the same derivation, we obtain a hierarchy of DWPS and a large number 
of modes of low-frequency vibration. For convenience, we define 
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The recurrence formulae of the total effective potential on the nth rank are then 

where 

A ,  = E / ( &  + (n  - l )mQ2)  

CY, = ( n  - I)So + S, + [ (n  - l ) m Q 2 / ~ ] ( S ,  - S o )  

p, = (n  - I)So + ASc + [(n - l)mQ2/E](AS, - S o ) .  

B ,  = ( n  - 1 ) ( ~  - ma’)/[& + (n  - l )mQ2] 

When considering the influence of its neighbouring atoms, the total effective potential 
of the ( n  + 1)th rank cluster is as 

Un+l(Sn+l,Sn)= un(Sn>Sn-lm) +&(S,+i -Sn -So)’ (42)  

with the ( n  - 1)th rank degree of freedom 
enough, S, locates in a single-well potential with a frequency determined by 

Qi,(Sn+i) = (1/2m) * a 2  Un+i (Sn+i , sn ) /aS2  = (1/2m>[a2 Un(Sn>Sa-Im)/aS? + 2 ~ 1  

to minimise it. When S,+, is small 

= (l /m)[A,mQ2 + E ] .  (43) 

With increasing S,+ 1, the squared frequency of S, turns out to be 

Q ~ n ( S , l + l )  = (l /m)(A,mQ2 - d 2 ,  -A ; /S :  + E ) .  (44) 

If the condition 

d 2  A 2  
&<A- A,mQ2 

S: 
(45) 

holds, then (44) becomes negative, causing the splitting of a single-well potential into a 
DWP. The two wells are determined by 

The solutions are 

S,,, = { [ E  + (n  - l)mS22]S,+1 - ( E  - mQ2)So}/(E + nmQ2) 

S,,, = { [ E  + (n  - l)mQ*]S,+, - ( E  - mQ2)So + bZ,/2SC}/(& + nmQ’). 
(47) 

The behaviours of the nth rank cluster determine the existence of the (n - 1)th rank 
DWP and its rigidity. 

Substituting (41) into ( 4 9 ,  we find that with ascending rank, (45) cannot always 
hold, hence a termination emerges. The maximum rank is derived as 

n v d 2 , ~ / m ~ Q ‘ S :  + f - (&/mQ2 - a). (48)  
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6' Figure 7. Sketch of d UJS,,, S,t-I)/dS, versus S, 
The set of full curves represents the first term in 
(46), while the dotted line represents the second 
term for a fixed S,,,, The intersections of the 
full lines with the dotted line correspond to the 

I solutions of (46). 

The emergence of the termination can be seen more clearly as demonstrated in figure 7: 
a bunch of full lines represents the first term in (46), while the dotted line represents the 
second term. So the intersections of the full lines with the dotted line correspond to the 
solutions of equation (46). With ascending rank, the gradients of the full lines become 
less steep. Consequently the intersections reduce from three to one, this indicating that 
DWP can no longer exist. This result accords with the demands suggested by Fleurov 
(1988) for energy considerations of the hierarchy. The same idea of a characteristic 
length for the termination of elementary vibrational excitations was also introduced as 
an ad hoc assumption in a fracton approach proposed by Alexander et a1 (1983). 

5. Discussion and concluding remarks 

From (48), we see that the termination depends on the material features of amorphous 
solids. By defining 

sc/so = P (49) 

we change (8) to 

Substituting (50) into (48), we have 

s d d C , ~ / " ~ Q ~ S i p ~ ~ + ~  + $ - (&/mQ2 - 4). 

Among the parameters associated with the hierarchical termination, p and Q are more 
important than m, Cc and So. It can be seen that the earlier the first-rank DWP appears, 
and the lower the dominant frequency of the system, the higher become the total rank 
of the hierarchical DWPS. Light atom on the chain and strong coupling of the electrons 
will also benefit the existence of the hierarchy. 

It has been shown in (43) that with growing rank, the frequency of the additional 
vibration mode decreases, and it can be proved that the barrier height of the hierarchical 
DWPS decreases at the same time. A hierarchical scheme of DWPS with progressively 
decreasing characteristic parameters is then constructed. Mezard et a1 (1984) have 
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observed a hierarchical structure for distribution of pure states in configuration space. 
In this paper such a hierarchical structure has been established in real glassy systems, 
from which the non-exponential relaxation is observed. 

It may be interesting to imagine this hierarchical structure to be a self-simulated one 
from rank to rank, and its fractal dimensionality dcan then be determined by the fractal- 
like potential scheme. The above mentioned hierarchical termination sets the range of 
the elementary vibrational excitations. So using the method proposed by Alexander et 
a1 (1983), the vibrational density of states of the hierarchically dynamical modes can be 
determined by 

where L is the interaction range determined by the hierarchical termination, and om is 
the fracton Debye frequency. Therefore, the physical nature of the hierarchical vibration 
modes is likely to be demonstrated in terms of the fracton approach. Detailed discussion 
of the determination of d and some physical properties associated are beyond the scope 
of the present paper and will be given in a separate one. 

Besides the hierarchical scheme, our model also embodies constraints. The physical 
nature of the constraints is primarily the interaction between different ranks. When S ,  
locates in one particular well of the two, e.g. S, = S m , ,  the only possible place for 
to locate is the well of smaller value, and what is more, the behaviour of S ,  is modulated 
by the detailed dynamics of Sn+l .  So the relaxing process involves many sequential 
correlated activation steps, meanwhile, a wide range of relaxation times is generated. 
This result builds a complete connection to the phenomenological and illustrative class 
of models proposed by Palmer et a1 (1984). There are also some experimental impli- 
cations on the constraints. The recent neutron-scattering measurements of Buchenau et 
a1 (1986) suggest that the DWPS and local vibration modes in vitreous silica have the same 
scattering vector and should be of the same origin. Strom (1986) deduced from his far- 
infrared absorption data of vitreous SiOz (Strom and Taylor 1977) that the coupling 
constant for an ‘excess’ absorption has a strong frequency dependence which indicates 
some degree of correlations between different ranks of vibrational modes. 

Before giving conclusions, we want to make some remarks about the effective kinetic 
energy Teff. Teff is not local in time but involves the retarded interactions between the 
movements of atom A. from time t’ to t. The retarded effect comes from the fact that 
the electrons are not in equilibrium with the atomic displacement, and it also shows the 
breakdown of the adiabatic approximation. We have proved that the retarded effect can 
be replaced by an effective mass (Chen and Wu 1989), namely Teff = ime f iQ2 ,  where meff 
depends on temperature and tunneling path. The former has dominant influence at low 
temperatures. 

In conclusion, by considering the coupling of the atomic tunneling states with local 
vibration modes, some interesting results are obtained based on the DVS model. First, 
we have found a hierarchy of constrained DWPS as well as plentiful low-frequency 
vibration modes. After that, the recurrence formula and the termination of the hierarchy 
are derived. 

N ( w )  = d(L/so)iwi-l/w$) (52)  
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